OU Math Day 2005

Higher Algebra Test

1. A student travels from her home to her school by running 1/3 of the way, jogging half the way, and then walking the last 3 miles. How far is it from her home to the school?

(A) 8 mi

(B) $18 \ mi$

(C) 36 mi

(D) 64 mi

(E) None of the above

2. What is the distance between the points (1,4) and (-1,2) in the rectangular coordinate plane?

(A) 8

(B) 6

(C) $\sqrt{5}$ (D) $2\sqrt{2}$

(E) None of the above

3. All of the solutions to the equation $x^2 = 36$ are:

(A) $x = \sqrt{6}$

(B) x = 6 (C) x = 0 and x = 6 (D) x = 6 and x = -6

(E) None of the above

4. Which of the following is **NOT** equal to $\frac{2}{5} + \frac{3}{12}$?

(A) $\frac{1}{10} + \frac{11}{20}$ (B) $\frac{1}{2} + \frac{3}{20}$ (C) $\frac{5}{4} - \frac{3}{5}$ (D) $\frac{1}{3} + \frac{19}{60}$ (E) None of the above

- 5. What is the smallest integer that is divisible by 6 different primes?
 - (A) 64
- (B) 20790
- (C) 30030
- (D) 1 million
- (E) None of the above
- 6. The number $\frac{36}{\sqrt{31} + \sqrt{19}}$ can be simplified to:

- (A) $3(\sqrt{31} \sqrt{19})$ (B) $18\sqrt{2}/5$ (C) $6\sqrt{3}$ (D) $2\sqrt{3}$ (E) None of the above
- 7. How many distinct real number solutions does the equation

$$x^{2}(2x+3)(x^{2}+4)(x^{2}+2x-15)(x^{2}+3x-18)^{2}(x^{2}+3x+18) = 0$$

have?

- (A) 10
- (B) 8
- (C) 6
- (D) 5
- (E) None of the above
- 8. How many times do the graphs of the equations $(x-2)^2 + (y+1)^2 = 4$ and y = 2x+1intersect in the rectangular-coordinate plane?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) None of the above
- 9. An integer N is written in base 5 as N = 2401. What is the base 3 expression for N?
 - (A) 200000

- (B) 11111 (C) 10021221 (D) 111000 (E) None of the above.

10. Which of the following equations expresses the commutative law for addition?

 $(A) \quad a+b=b+a$

(B) (a+b)+c=a+(b+c)

(C) a(b+c) = ab + ac

(D) a(bc) = (ab)c

(E) None of the above

11. How many integers between 1 and 1000 inclusive are divisble by 3 but not divisible by 15?

(A) 267

(B) 333

(C) 67

(D) 133

(E) None of the above

12. Let N be the smallest integer for which the number of integers between 1 and N inclusive which are divisble by 3 but not by 15 is equal to 100. What is N?

(A) 375

(B) 747

(C) 372

(D) 500

(E) None of the above

13. Let x and y be numbers which satisfy the equations: x-2y=1 and 2y+3x=74. What must x equal?

(A) 5/2

(B) 202/7

(C) 23

(D) 94

(E) None of the above

14. The graph of $y = -x^2 + 4x + 21$ in the rectangular coordinate plane does **NOT** pass through which of the four quadrants?

(A) I

(B) II

(C) III

(D) IV

(E) None of the above.

15. Given that $f(x) = x^2$ and g(x) = 5x - 3 determine f(g(x)) - g(f(x)).

(A) 0

(B) $x^2 - 5x + 3$ (C) $20x^2 - 30x + 12$ (D) $25x^2 - 30x + 9$

(E) None of the above.

16. If P(x) is a polynomial of degree 4 and Q(x) is a polynomial of degree 3 then P(Q(x))is a polynomial, what is its degree?

(B) 7 (C) 0 (D) It can't be determined without more information. (A) 12

(E) None of the above.

17. In 45 minutes a jogger runs a distance of three and one third miles. What is the jogger's average rate of speed in miles per hour?

(A) $4.\overline{3}$ mph (B) $4.\overline{4}$ mph (C) $4.\overline{5}$ mph (D) $4.\overline{6}$ mph (E) None of the above

18. The quadratic polynomial $10x^2 + 25x - 15$ factors as:

(A) 5(2x-1)(x+3)

(C) 5(1-2x)(x+3)(B) (2x-1)(x+3)

(D) 5(2x-3)(x+1)

(E) None of the above

19. Let n be a positive number and let $z = (n^{1/3})^2 n^{-4} \sqrt{n\sqrt[3]{n}}$. Find $\log_n(z)$.

(A) -5/2 (B) -8/3

(C) 1/3 (D) 5/2

(E) None of the above.

- 20. If x = 3.0001 what whole number is nearest to the value of $\frac{x^3 + 2x^2 8x 21}{x 3}$?
 - (A) 0
- (B) 14
- (C) 31
- (D) ∞
- (E) None of the above
- 21. Consider an equation of the form $2x^2 + bx + c = 0$ where b and c are constants. If the sum of the two solutions of this equation is 5 and their product is 6 then what must cequal?
 - (A) -5
- (B) 3
- (C) 6
- (D) 12
- (E) None of the above
- 22. Among the five rational numbers $\frac{5}{11}$, $\frac{4}{13}$, $\frac{5}{12}$, $\frac{6}{19}$ and $\frac{4}{12}$ which is the smallest?
 - (A) $\frac{5}{11}$ (B) $\frac{4}{13}$ (C) $\frac{5}{12}$ (D) $\frac{6}{19}$

- (E) $\frac{4}{12}$

- 23. The graph of the equation |x| |y| = 1 is a:
 - (A) ray

- (B) straight line (C) circle (D) square (E) None of the above
- 24. What is the smallest integer N for which $\left(\frac{3}{5}\right)^N$ is smaller than $\frac{1}{5}$?
 - (A) N = -1
- (B) N = 3 (C) N = 4
- (D) There is no such integer N.

(E) None of the above