OU Math Day 2008

Trigonometry Test

1.	A right t	riangle	has s	sides c	of length	5, 1	2 and	13.	What	is t	the	cosine	of t	he	angle	oppos	ite
	the side of	of length	ı 5?														

- (A) 1
- (B) $\frac{5}{12}$ (C) $\frac{5}{13}$
- (D) $\frac{12}{13}$
- (E) None of the above.

2. A right triangle has sides of length 5, 12 and 13. What is the sine of the angle opposite the hypotenuse?

- (A) 1
- (B) $\frac{5}{12}$ (C) $\frac{5}{13}$ (D) $\frac{12}{13}$
- (E) None of the above.

3. The expression $\sin\left(\frac{\pi}{2} + \theta\right) + \cos(\theta + \pi)$ simplifies to

- (A) $2\cos(\theta)$
- (B) $-2\cos(\theta)$ (C) $\cos(\theta) + \sin(\theta)$
- (D) 0
- (E) None of the above.

4. If $\cos(\theta) \sec(\theta) = 1/2$ then what does θ equal?

- (A) 0
- (B) 30°
- (C) 45°
- (D) 60°
- (E) None of the above

5. Determine the value of $\cos(x)\sin^3(-x)+\cos^3(-x)\sin(x)$ given that x is an acute angle with $\cos(x) = 1/3.$

- (A) $\frac{2\sqrt{2}}{9}$
- (B) 0 (C) $-\frac{14\sqrt{2}}{81}$ (D) $-\frac{2\sqrt{2}}{9}$
- (E) None of the above.

6. If $\sin \theta = -1$ then which of the following is a possible value for θ ?

(A) 0

(B) $\pi/6$

(C) $\pi/4$ (D) $-\pi/2$ (E) None of the above.

7. Which of the following equals the cotangent of 0° ?

(A) 0

(B) 1

(C) 1/2

(D) -1

(E) None of the above.

8. How many angles θ whose degree measure is between 0 and 360 inclusive have $\tan(\theta) = -1$?

(A) 0

(B) 2

(C) 3

(D) 4

(E) None of the above.

9. If $arctan(x) = \pi/2$ then a possible value for x is

(A) 0

(B) $\sqrt{3}$

(C) $1/\sqrt{3}$ (D) $-\sqrt{3}$ (E) None of the above.

10. Let T be a triangle with vertices A, B and C and side lengths |AB| = 13, |AC| = 14 and |BC| = 15. At which vertex is the interior angle of T the largest?

(A) vertex A

(B) vertex B

(C) vertex C

(D) None of the above.

11. If $\csc(x) = \sqrt{7}$ then which of the following does $\sec(x)$ equal?

(A) $\sqrt{7}/7$

(B) 6/7 (C) $\sqrt{7}/\sqrt{6}$ (D) $\sqrt{7}$

(E) None of the above.

12. A circle has a radius of 10 centimeters. Find the length, in centimeters, of the arc intercepted by a central angle of 100° .

(A) $50\pi/9$

(B) $100\pi/9$

(C) $500\pi/9$

(D) $18\pi/5$

(E) None of the above.

13. If $0 < x < 90^{\circ}$ and $\sin(x) = 2/3$ then what does $\cos(x)$ equal?

(A) 3/2

(B) $2/\sqrt{5}$ (C) $\sqrt{5}/3$

(D) 5/9

(E) None of the above.

14. The cotangent of an acute angle equals 1/2. What is the sine of the angle?

(A) $1/\sqrt{3}$ (B) $\sqrt{5}/2$ (C) $2/\sqrt{5}$ (D) $1/\sqrt{5}$

(E) None of the above.

15. Suppose that $\tan \theta = -\frac{5}{3}$ and $\sec \theta = -\frac{\sqrt{34}}{3}$. What is $\csc \theta$?

(A) $\frac{5}{\sqrt{34}}$ (B) $-\frac{3}{\sqrt{34}}$ (C) $\frac{\sqrt{34}}{5}$ (D) $-\frac{3}{5}$ (E) None of the above.

16. The side lengths of a right triangle are a, b and c where c is the side opposite the right angle. Which of the following equals the sum of the tangents of the angles opposite the edges with lengths a and b?

(A) 2a/b

(B) c^2/ab (C) (a+b)/c

(D) 1

(E) None of the above

17. If $\sin(\theta) = .1$ and $\frac{917}{2}\pi \le \theta \le \frac{919}{2}\pi$ then what does $\cos(\theta)$ equal?

(A) $-\frac{1}{\sqrt{99}}$ (B) $\frac{1}{\sqrt{99}}$ (C) $\sqrt{.99}$ (D) $-\sqrt{.99}$

(E) None of the above.

- 18. A triangle Δ has vertices A, B and C. The length of the edge between B and C is 10, and the angles at A and B are 60° and 45° respectively. What is the radian measure of the angle at C?
 - (A) $5\pi/24$
- (B) 5/24
- (C) $5\pi/12$
- (D) 5/12
- (E) None of the above.
- 19. A triangle Δ has vertices A, B and C. The length of the edge between B and C is 10, and the angles at A and B are 60° and 45° respectively. What is the area of Δ ?
 - (A) $50\sqrt{3}/(1+\sqrt{3})$
- (B) $10\sqrt{3}/(1+\sqrt{3})$ (C) $50/(3+3\sqrt{3})$
- (D) $10/(3+3\sqrt{3})$

- (E) None of the above.
- 20. Determine the value of $\tan^2(\theta)$ given that $\sin(-\theta) = .3$.
 - (A) $\sqrt{.91}$
- (B) 9/91
- (C) .91
- (D) -.91
- (E) None of the above.
- 21. Which of the following equals $(\sin(x) + \cos(-x))^2 \sin(2x)$?
 - (A) $1 + \sin(2x)$
- (B) 1
- (C) 0
- (D) $1 \sin(2x)$
- (E) None of the above.

- 22. If $\sin 2x = 4/5$ then what does $\tan^2(x)$ equal?
 - (A) 1/4
- (B) 16/9
- (C) 4/5
- (D) $\sqrt{5}/3$
- (E) None of the above
- 23. Let α be the angle between $\pi/2$ and π with $\sin(\alpha) = 1/3$, and let β be the angle between π and $3\pi/2$ with $\tan(\beta) = 4/3$. Then the value of $\cos(\alpha + \beta)$ is
 - (A) $\frac{6\sqrt{2}+4}{15}$
- (B) $\frac{8\sqrt{2}-3}{15}$ (C) $\frac{-8\sqrt{2}-3}{15}$ (D) $\frac{6\sqrt{2}-4}{15}$
- (E) None of the above.