OU Math Day 2009

Higher Algebra Test

- 1. Find the simplest radical form of $5\sqrt{10}\sqrt{35}\sqrt{2}$
 - (A) $50\sqrt{7}$
- (B) $50\sqrt{10}$
- (C) $10\sqrt{35}$
- (D) $14\sqrt{10}$
- (E) None of the above

- 2. The reciprocal of $\frac{1}{5} + \frac{1}{9} + \frac{1}{2}$ is
 - (A) 90/73
- (B) 16
- (C) 5/4
- (D) 37/45
- (E) None of the above

- 3. Which of these numbers is largest?
 - (A) $(1/7)^{100}$
- (B) $(1/7)^{10}$

- (C) 1/7 (D) $(1/7)^{-10}$ (E) $(1/7)^{-100}$
- 4. The expansion of $(1+2x)^3$ is

(A)
$$1+6x+6x^2+2x^3$$
 (B) $1+3x+3x^2+8x^3$ (C) $1+6x+12x^3+8x^3$ (D) $1+5x+8x^2+4x^3$ (E) None of the above

(B)
$$1 + 3x + 3x^2 + 8x^3$$

(C)
$$1 + 6x + 12x^3 + 8x^3$$

(D)
$$1 + 5x + 8x^2 + 4x^3$$

(E) None of the above

5. How many distinct real number solutions does the equation

$$(x^2 - 1)(x^2 + 2x + 1)(x^2 - 4x + 3)(x^2 + 2) = 0$$

have?

(A) 3

(B) 4

(C) 5

(D) 6

(E) None of the above

- 6. In simplest form $4(x^3 x^2 + 2) + 2(x^2 x 6) (3x^3 + 2x^2 x)$ equals

 - (A) $7x^3 3x 4$ (B) $x^3 4x^2 x 6$ (C) $x^3 3x 4$ (D) $x^3 4x^2 9$ (E) None of the above

- (E) None of the above
- 7. The solution to the system of equations $\begin{cases} 5x + 4y = 8 \\ x 2y = 10 \end{cases}$ is (x, y) =
 - (A) (0,2)
- (B) (3, -7/4) (C) (2, -4) (D) (4, -3)

- (E) None of the above
- 8. Let ℓ be the line whose equation is y = -x + 2. Where does the point P(4, -2) lie?

- (A) below ℓ (B) on ℓ (C) above ℓ (D) All of the above (E) None of the above
- 9. Let ℓ be the line whose equation is y = -x + 2. Where does the point Q(-1,4) lie?
 - (A) below ℓ

- (B) on ℓ (C) above ℓ (D) All of the above (E) None of the above
- 10. Which of the following is **NOT** equal to $\frac{2}{3} + \frac{1}{4}$?

 - (A) $\frac{4}{6} + \frac{1}{4}$ (B) $\frac{7}{12} + \frac{4}{12}$ (C) $\frac{1}{7} + \frac{2}{7}$ (D) $1 \frac{1}{12}$ (E) $\frac{1}{6} + \frac{3}{4}$

11. The product of three consecutive positive integers is 120. What is their sum?

(A) 15

(B) 5

(C) 20

(D) 12

(E) None of the above

12. If 1/3 is halfway between 1/7 and x on a number line then x equals

(A) 2/21

(B) 5/21

(C) 11/21

(D) 17/21

(E) None of the above

13. If $6x^2 + 19x - 7 = (Ax + B)(Cx + D)$ then the value of A + C - B - D is

(A) -1

(B) 0

(C) 18

(D) 7

(E) None of the above

14. All of the solutions to the equation $\sqrt{y^2} = 121$ are

(A) $y = \pm 121$

(B) y = 14641 (C) $y = \pm 11$ (D) y = 11

(E) None of the above

15. The smallest positive integer n for which there are 4 primes between n^2 and $(n+1)^2$ is

(A) n = 4

(B) n = 5

(C) n = 6

(D) n = 7

(E) None of the above

16. Which of the following is the fractional form of the repeating decimal $.\overline{21}$?

(A) 7/33

(B) 11/50

(C) 1/300

(D) 21/100

(E) None of the above

- 17. All of the solutions to the equation $x + 1 = \frac{4 + x}{x}$ are
 - (A) x = 2
- (B) x = 0
- (C) x = 2 and x = -2

(D) x = -4 and x = 2

- (E) None of the above
- 18. How many integer solutions does the inequality |2x 5| < 7 have?
 - (A) 0
- (B) 2
- (C) 4
- (D) 6
- (E) None of the above
- 19. If a = 10.0001 then what is the integer closest to the value of $\frac{2a^2 17a 30}{10 a}$?
 - (A) -10021
- (B) -23
- (C) -20
- (D) -2
- (E) None of the above
- 20. If f(x) = x + A for some constant A and f(f(f(1))) = 6 then the value of A is:
 - (A) 5
- (B) 5/3
- (C) 2
- (D) 2009
- (E) None of the above

21. What is the remainder when

$$1! + 2! + 3! + 4! + \cdots + 2008! + 2009!$$

is divided by 10? (The factorial n! of a positive integer n is the product of all positive integers less than or equal to n, that is $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-1) \cdot n$.)

- (A) 0
- (B) 1
- (C) 3
- (D) 9
- (E) None of the above