Oklahoma Math Day

November 10, 2022

Trigonometry

INSTRUCTIONS:

- 1. Do not begin the test until told to do so.
- 2. Calculators are not permitted.
- 3. Mark your answers on the separate answer sheet.
- 4. Please remain in your seat until the time is called.

OU Math Day 2022

Trigonometry Test

1.	In	which	quadrant	is	the	terminal	side	of	the	angle	2022°	?
----	----	-------	----------	----	-----	----------	------	----	-----	-------	----------------	---

(A) I

(B) *II*

(C) III

(D) IV

(E) None of the above

2. Which of the following is closest to the area of a triangle with side lengths 150, 210, and 164?

(A) 149, 537, 024

(B) 12,229

(C) 148,839

(D) 201,644

(E) 474

3. A right triangle has sides of length 5, 12 and 13. What is the tangent of the angle opposite the side of length 5?

(A) 0

(B) $\frac{5}{12}$

(C) $\frac{5}{13}$

(D) $\frac{12}{13}$

(E) None of the above

4. A right triangle has sides of length 5, 12 and 13. What is the cosine of the angle opposite the hypotenuse?

(A) 0

(B) $\frac{5}{12}$

(C) $\frac{5}{13}$

(D) $\frac{12}{13}$

(E) None of the above

5. The difference formula for sine states that: for all angles A and B, $\sin(A-B)$ equals

(A) $\cos(A)\cos(B) - \sin(A)\sin(B)$

(B) $\cos(A)\cos(B) + \sin(A)\sin(B)$

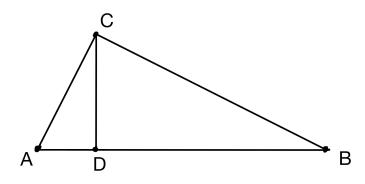
(C) $-\cos(A)\sin(B) - \sin(A)\cos(B)$

(D) $\sin(A)\cos(B) - \cos(A)\sin(B)$

(E) None of the above

- 6. Let θ be an angle in the second quadrant and let $S = \sec(\theta)$ and $C = \tan(\theta)$. Then
 - (A) S > 0 and C > 0
- (B) S > 0 and C < 0
- (C) S < 0 and C > 0

- (D) S < 0 and C < 0
- (E) None of the above


7. Rewriting the expression

$$\frac{\tan^4(x)\sin(x)\cos^3(x)\csc^4(x)}{\sec^4(x)\cot^3(x)}$$

in terms of $\sin x$ and $\cos x$ results in which of the following?

- (A) $\cos x / \sin x$
- (B) $\sin^2 x$
- (C) $\cos^3 x$
- (D) $\sin^4 x$
- (E) None of the above
- 8. What is the degree measure equivalent of $\pi/6$ radians?
 - (A) 30°
- (B) 45°
- (C) 60°
- (D) $7^{\circ} 30'$
- (E) None of the above.

- 9. If $sin(x) = \frac{1}{\sqrt{7}}$ then sec(x) equals
- (A) $\sqrt{7}/\sqrt{6}$ (B) 6/7 (C) $\sqrt{6}/\sqrt{7}$
- (D) $\sqrt{7}$
- (E) None of the above
- 10. In the figure shown below, AC is perpendicular to BC and CD is perpendicular to AB. If the length of AC is $3\sqrt{5}$ and the length of BD is 12, what is the length of AB?
 - (A) 3
- (B) $3\sqrt{2}$
- (C) $\sqrt{5}$
- (D) 4
- (E) None of the above

11. Which of the following equals $\arctan(1) - \arctan(0)$?

(A) $5\pi/4$

(B) $\pi/4$

(C) $-\pi/4$

(D) $-3\pi/4$

(E) None of the above

12. Find the value of f(0) if $f(x) = \cos(\sin(\tan(x)))$.

(A) 1

(B) 0

(C) $\pi/2$

(D) -1

(E) None of the above

13. A clock tower casts a shadow 70 feet long when the angle of the sun (measured from the horizon) is 60°. How many feet tall is the tower?

(A) $70\sqrt{3}$

(B) $210\sqrt{3}$

(C) 140

(D) $70/\sqrt{3}$

(E) None of the above

14. What is the value of $\cos(2\phi)$ given that $\sin(\phi) = 2/3$?

(A) -1/3

(B) -1/9

(C) 1/3

(D) 1/9

(E) None of the above

15. The exact value of $\arccos(\cos(5\pi/3))$ is

(A) $5\pi/3$

(B) $\pi/3$

(C) $\pi/6$

(D) $2\pi/3$

(E) None of the above.

16. Two sides of a triangle have lengths 5 and 6. If the sine of the angle between them is $2\sqrt{6}/5$ then what is the length of the third side of the triangle?

(A) 11

(B) $3\sqrt{2}$

(C) 7

(D) $5\sqrt{6}$

(E) None of the above

- 17. How many angles θ satisfy the equation $\theta = \sec(\theta)$? (Use radian measure for θ .)
 - $(A) \quad 0$
- (C)2
- (D) infinitely many
- (E) None of the above.

- 18. Which of the following equals $\cos(3\pi/2 + \arctan(x))$?
 - (A) $-\frac{1}{\sqrt{1+x^2}}$ (B) $\frac{\sqrt{x^2-1}}{x}$ (C) $\sqrt{1-x^2}$ (D) $\frac{x}{\sqrt{1+x^2}}$ (E) None of the above

- 19. In triangle PQR, PQ has length 8, the interior angle at P is 30° , and the interior angle at Ris 45° . What is the length of QR?
 - (A) 4
- (B) 8
- (C) $4\sqrt{2}$
- (D) $4/\sqrt{2}$
- (E) None of the above
- 20. Find the number of solutions to $\tan^2(\theta) + \frac{4\sqrt{3}}{3}\tan(\theta) + 1 = 0$ for which $-\pi \le \theta \le \pi$.
 - (A) infinitely many
- (B) 4
- (C) 2
- (D) 0
- (E) None of the above
- 21. Compute the sum of all solutions to $\tan^2(\theta) + \frac{4\sqrt{3}}{3}\tan(\theta) + 1 = 0$ for which $-\pi \le \theta \le \pi$?
 - (A) π
- (B) $2\pi/3$
- (C) $5\pi/6$
- (D) $7\pi/6$
- (E) None of the above